
DevOpsDays Fortaleza 2025

Testando e entregando 85+
libs mensalmente
Emídio Neto

CI em projetos open-source

Maintainer OpenTelemetry Docs PT-BR

Approver OpenTelemetry Python SDK

Organizador do Cloud Native RN

Quem sou eu

Emídio Neto

Por que testar múltiplas versões ?1

Como o Tox ajuda (ou não) + GHA2

4

Releases + Backport3

Agenda

Desafios e lições aprendidas

4 Q&A5

Por que testar múltiplas
versões ?

A integração contínua (CI) é o processo
automatizado de build, teste e validação de
cada alteração de código para garantir que
o projeto permaneça estável e consistente

ao longo do tempo.

Por que testar
múltiplas versões ?

Garantir
compatibilidade

Preparação para o
futuro e detecção
de depreciações

Requisitos
específicos a
depender do

ambiente/cliente

1 2 3

2 monorepos
Repo principal e

repo de contrib (instrumentações específicas)

PEP 585 – Built-in
Generic Types
(Python 3.9)

A partir do Python 3.9, você pode
usar os tipos integrados diretamente
(por exemplo, list[int]), o que pode
quebrar o código que depende do
estilo antigo.

PEP 604 – Allow
writing union types as
X | Y
No Python 3.9, embora você pudesse
usar tipos integrados (como list[int])
graças ao PEP 585, os tipos union
ainda precisam da sintaxe
“typing.Union” se você quiser
compatibilidade com versões
anteriores (<3.10).

Breaking changes que
afetam o serviço em

runtime não são legais

Uma boa prática é
rodar testes para todas

versões Python que
sua biblioteca suporta

Matriz de
Testes

Static Type
Checkers

Pacotes populares fazem
isso

18 Python Packages 69 Python Packages

~300+ Jobs na CI ~700+ Jobs na CI

+ 1000 Jobs

Considere a seguinte matriz de
testes:

package: [”opentelemetry-api”]
OS: [”Ubuntu”]
python: [”3.8", “3.9”, “3.10”,
“3.11”, “3.12”, “3.13”]

Testes

Para uma biblioteca parece OK

mas e pra 80?

Como o Tox ajuda
(ou não) + GHA

Tox automatiza e
padroniza testes em
Python.
Como um orquestrador
https://tox.wiki

x

6 versões Python
+ pypy3 + lint

18 Python Packages

Para cada pacote, instalar as dependências
necessárias pro teste

Para cada pacote, rodar os testes, lint ou
benchmark

Até funcionou por um tempo, mas...

Só criar uma matriz dos 80 pacotes
...

Jinja2 Templates
+ Automação em Python

=
Gerar os workflows

Também verifica se está tudo
Up-to-date

Releases + Backport

Opentelemetry Python → PEP 440

Release: X.Y.Z → e.g., 1.37.0

Pre-releases: aN (alpha), bN (beta), rcN (release candidate) e.g., 0.58b0

Dev releases: .dev → e.g., 1.37.0.dev (fica apenas no git)

e.g., opentelemetry-api → 1.34.0, 1.34.1 (patch release),

opentelemetry-instrumentation → 0.58b0, 0.58b1 (patch)

2 PRs por repositório (automação via Github Actions)
1 para fazer bump da versão nos arquivos removendo o sufixo
.dev para ser mergeado na branch de release (o que vai ser
publicado no PyPi)
1 para fazer bump da versão mantendo o sufixo .dev para a branch
main (manter o ciclo de desenvolvimento ativo)

Automação via Github Actions cria uma branch de release por
repositório: e.g., release/v1.37.x-0.58bx

Release principal: Automação via GHA para realizar o build dos pacotes
python e publicar no pypi a partir do que tiver na branch de release

PR para atualizar a main com a versão de dev (próxima versão)

Release principal

Fluxo de aplicar patches:

1.Abrir PR com o fix apontando pra main
2.Approve + Merge do PR com o fix, adicionar changelog etc
3.Fazer git cherry-pick do commit na branch de release e abrir um

novo PR para branch de release (backport)
4.Approve + Merge do PR na branch de release

Para patch release: Triggar workflow de prepare Patch release via
Github Actions + Mergear o PR gerado + Triggar workflow de release
(mesmo usado para release principal)

Desafios e Lições
Aprendidas

52.577h

1.Arquivos tox.ini imensos -- Chegando a ~1040 linhas

2.Difícil manter sincronizado o que está no tox.ini VS o que roda na CI

3. Instalação de pacotes lenta em alguns testes

4.CI de Lint demorava séculos para rodar

5. Testar um mesmo pacote em múltiplas versões do Python só que
também para múltiplas versões de uma dependência específica

1.Matriz no Github Action tem limite de 250 Jobs -- sem chances

2.Testar o “básico” do repo -contrib em todo PR no repositório core

3. Testes no -contrib apontam para branch main no -core

@emdneto

Obrigado!

