grupy

> 21° Meetup GruPy RN 2025

Fazendo Magica
com Python

Emidio Neto
Software Engineer

66 No Python -
Tudo é =
Objeto LG)U

X = 160

print(type(x))

print(x.bit_length())
print(x.__class__)

<class 'Int'>
A4

<class 'Int'>

print(type(None))

<class 'Nonelype'>

def somala, b):
return a + b

f = soma 5

nrint{f(2, 3)) | o
print(type(f)) <class 'function’>

bar
f.foo = "har"

print{f.foo)

print(type(type))

<class 'type'>

import math

def foo{x):

print{x, "->", type(x)) 1 -> <class 'int'>
abc -> <class 'str'>
foo(1l)
foo("abc")
foo{None)
foo(math)

None -> <class 'NoneType'>
<module 'math' (built-in)> -> <class 'module'>
<function f at 0x1010633d0> -> <class 'function'>

<class '__main__.C'> -> <class 'type'> - ??

def f(}: pass
foolT) <__main__.C object at 0x101038d/0> -> <class

' main__.C'>

’~ Duck Typing
—> comportamento importa

mails que o tipo

Como tudo e objeto...

Entao eu posso alterar o comportamento do

gue eu quiser em tempo de execucao

Monkey
Patching

import time
original sleep = time.s leep

def patched sleep():
return None

time.sleep = patched sleep

time.sleep(10)

(4

O "monkey patching" € uma técnica
usada para alterar dinamicamente o
comportamento de algum codigo em

tempo de execucao.

_real_get = requests.get

def patched_requests _get(*args, **kwargs):
orint(f"Patch: [HTTP] GET {args[0]}")

return _real_get(*args, **kwargs)

requests.get = patched requests get

requests.get("https://example.com”)

Pra ficar mais facil

entender

Pense no monkey patching

como se fosse um decorador

nao explicito

Mas as vezes pode ser dificil...
* Manter metadados
* Tornar a aplicacao de patches reversivel e
consistente
* Funcionar de forma transparente mesmo se a
biblioteca for recarregada ou importada

posteriormente

Just use wrapt!

Documentation

https://wrapt.readthedocs.io/en/master/

import wrapt
import requests

def log_get_calls{wrapped, instance, args, kwargs):
print(" [LOG] Chamando requests.get com:", args, kwargs)
response = wrapped(=args, #+xkwargs)
print(" [LOG] Status:", response.status_code)
return response

wrapt.wrap_function_wrapper(requests, "get", log_get_calls)

requests.get("https://example. com")

Um caso de uso

da vida real

wrapt example: asqgiref toy instrumentation

'.-.'r';1|;‘.1 wln] | wrap functiLon wrapper

opentelemetry. instrumentation.utils import unwrap

AsgiretInstrumentor(Baselnstrumentor):
wnstrument(self, **kwarqs):
wrap_ function wrapper(asgiref.sync, "async to sync", self._ wrapper)

uninstrument(self, **kwargs):
unwrapl(asgiref.sync,

wrapper(self, wrapped, instance, args, kwargs):
self.tracer.start _as current span("async to sync", kKind=S5pankKind.INTERNAL) as span:
attributes = {
ptiol "async_to_sync”,
wce”: "\n".j0wn{ traceback. format stack(limit=1@))

span.adga event(name="exception”, attributes=attributes)
wrapped(*args, **kwargs)

voce provavelmente usa
1ISSO nos testes para
simular dependéncia

externa

sim, mas cadé a magica

S python -c 'print("world")'

> world

S PYTHONPATH-=.
python -c 'print("world")’

> hello world

S cat sitecustomize.py
print("hello", end=" ")

sitecustomize

Por padrao, o modulo site da sua
instalacao Python tenta carregar um
modulo chamado 'sitecustomize do

que tiver definido no seu
PYTHONPATH.

Referéncia: https://docs.python.org/3/library/site.html#module-sitecustomize

Juntando Monkey

Patching + Sitecustomize

1. Monkey Patching

2. sitecustomize faz a magica para
iInicializar os patchings sem mexer

no codigo principal

sitecustomize.py (%

v @ opentelemetry-instrumentation
v [src/opentelemetry/instrumentation

(2 8 ke U & F

v @@ auto_instrumentation
[__init__.py

[_load.py

Y sitecustomize.py

ppentelesetry, SASTrumentat ion, auto_SAstrusentat ion t initialize

i 1izel]

auto-instrumentacao

Obrigado!
o @emdneto

